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Mechanistic Studies of the Rhodium-catalysed Cyclization of a,w-Alkynoic Acids to 
Alkylidene Lactones. Crystal Structures of Two Iridium Model Catalytic Intermediates 
Todd B. Marder,t* Dominic M.-T. Chan,t* William C. Fultz, Joseph C. Calabrese, and David Milstein 
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A mechanism for the Rh-catalysed cyclization of alkynoic acids to alkylidene lactones which accounts for the 
formation of Z-isomers only, is presented with the structures of Ir cis-hydrido-carboxylate and cis-hydrido-o-vinyl 
model intermediates. 

The Lewis acid-catalysed cyclization of alkynoic acids rep- 
resents a useful method for the preparation of alkylidene 
lactones. The traditional catalysts such as Hg2+ (ref. 1,2) and 
Ag+ (ref. 3) compounds however, show poor regio- and 
stereoselectivity for substituted alkynoic acids (R # H). Both 
E-and Z-isomers (2), (3) and larger ring lactones with internal 
double bonds (4) are produced (see Scheme 1). We have 
recently developed a series of Group VIII transition metal 
catalysts for the cyclization of alkynoic acids to the corre- 
sponding exocyclic enol lactones.4.5 The most versatile of 
these catalysts, [ (Cy2PCH2CH2PCy2)RhCll2 ( 5 )  (Cy = 
cyclohexyl) is active in CH2C12 at room temperature and offers 
very high regio- and stereoselectivities; only 2-isomers (3) are 
observed [no (2) is formed] and five membered ring products 
are strongly favoured (for n = 1). 

It is critical that any proposed mechanism explain the 
exclusive formation of 2 products (3) arising from rigorously 
trans-addition of the carboxylate O H  to -CEC-. Small 
amounts of the larger ring products (4) also derive from 
trans-addition. Utilizing very basic IrI complexes which show 
little or no catalytic activity at room temperature in tetrahy- 
drofuran, we have isolated several complexes which serve as 
models for intermediates on the proposed catalytic pathway. 
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Proton n.m.r. spectra indicate the first step to be the 
protonation of the basic metal complex forming M"1-H. This 
species can exist either as the mono-(A,) or bidentate 
carboxylate hydride (Az) or, perhaps as the ion pair 
[M-H]+[RC-C(CH2)nC02]- (A?) (Scheme 2) .  The 
stoicheiometric reaction of [(PEt3)31rCl]h with 
C H ~ C E C ( C H ~ ) ~ C O ~ H  (lb) yields the cis monodentate car- 
boxylate hydride complex (6a);S the molecular structures is 
shown in Figure 1. A similar complex (6b) is formed in the 
analogous reaction using (lc). The MIILH complexes should 
have Lewis acid properties, particularly in the ionic form (cf. 
A*), and co-ordination of G C  to the M-H+ centre (cf. B) 
should enhance nucleophilic attack of carboxylate on the 

f Spectroscopic data for (6a): i.r. [tetrahydrofuran (thf)] vIr-.,, 2224m, 
vc0 1636s(CO) cm-'; -?IP{IH} n.m.r. (121.69 MHz, THF-d8). -8.88 
(d, *JpPp 19 Hz), -20.04 p.p.m., (t, *Jp-p 19 Hz); I3C{lH} n.m.r. 
(75.59 MHz, THF-ds): 6174.78 (d, 3Jp-c  2.3 Hz, -COz-), 80.5 1,74.60 
(s, -GC-), 37.34 (d, Jp-c 5.5 Hz, -CH2-), 20.53 (dt. Jp-c 36.0, 3Jp-c 

-CH2-), 8.77 (s, 2PCHzCH3), 8.64 (d, *Jp-c 4.0 Hz, PCHzCH,); IH 
2.4 Hz, P-CH2Me), 17.25 (vt, Jp-c 16.1 Hz, 2PCH2Me), 16.93 (s, 

n.m.r. (360MHz, THF-d8), 62.29 (s, 4H,-CH2-CH2-), 2.01-1.68 (m, 
18H, 3PCHzMe), 1.66 (s, 3H, GC-CH3), 1.15 (m,  18H, 2PCH2CH,), 
1.06 (m, 9H, PCH2CH3), -20.00 (dt, 2Jp_E, 19 and 12 Hz, l H ,  Ir-H). 

2193m, vC,1764s, 1729w(sh) (trace isomer), 
(vc=-)1646m cm- 1 ;  31P { lH} n.m.r 121.69 MHz, CD2CI,: -42.19 (d. 
2Jp-p 21 Hz), -50.33 p.p.m (t, *Jp_p 21 Hz); 13C (1H) n.m.r, (75.59 
MHz, CD2C12: 6 177.13 (s, -C02-), 141.82 (overlapped dt, zJp-c 10 
and 5 Hz, =C,O), 109.84 (dt, 2Jp-(. 87, 2Jp_c  14 Hz, Ir-Ca), 30.80 (s, 
-CH,-), 29.93 (s, -Me), 22.37 (s, -CH,-), 20.38 (dt, 2Jp..<- 30, 1 
Hz, PMe3), 17.94 (td, 2Jp-c 19, 3Jp-c 2 Hz, 2PMe-J; IH n.m.r, (360 
MHz, CD2C12), 62.64 and2.50 (m,-CH,-CH2-), 1.99 (m, -Me), 1.57 
(d, 2Jp-K-8 Hz, PMe3), 1.50 (vt, 2Jp_EJ 3 Hz, 2PMe,), -23.53 (dt, *JP l3 

15 and 16 Hz, Ir-H). 
§ Crystal data for (6a): C24H53C1102P3, orthorhombic, Pca2,. (No. 

3058.2 A3, 2 = 4, ~ ( M o )  46.09 cm-1; Enraf-Nonius CAD4 
diffractometer, Mo-K, radiation, 3954 data collected using w-scan 
method, 4.4"d28d55.Oo, corrected for absorption (DIFABS). 2901 
unique reflections with I b 3.0 a(Z) used in solution and refinement; 
solution by automated Patterson analysis, refinement by full-matrix 
least-squares, weights a[02(Z) + 0.00091'] - V2, 281 parameters, all 
non-H atoms anisotropic, H atoms fixed [except for Ir-H(l) located 
on diff. map and refined]; 3 ethyl groups show disorder; R = 0.027, R,  
= 0.029, largest residual density 0.76 e i b 3  near Ir. 

For (7)-CH2C12: CI,H3,C131r0,P,, monoclinic-b. P2,ic (No. 14), a 

U = 2386 A3,Z = 4, p(Mo) 60.02 cm-1; Nicolet R3, Mo-K, radiation, 
5905 data collected using o-scan method, 4.4" d 28 d 55.0", corrected 
for absorption (DIFABS), 4310 unique reflections with I > ,  3.0 o ( I )  
used in solution and refinement; solution by direct methods (MUL- 
TAN), refinement by full-matrix least-squares, weights a(& (Z) + 
0.0009Z2]-'/2, 221 parameters, all non-H atoms anisotropic, H atoms 
fixed [except for Ir-H(1Jr) located on diff. map and refined]; the 
CHzClz of crystallization was best modelled as being four fold 
disordered about the centre of symmetry (0.5,0.5,0.5); R = 0.024, R, 
= 0.029. Atomic co-ordinates, bond lengths and angles, and thermal 
parameters have been deposited at the Cambridge Crystallographic 
Data Centre. See Notice to Authors, Issue No. 1. 

For (7): i.r. (nujol) 

29), u = 18.076(3), b = 10.774(2), c = 15.703(2)A, T -75"C, U = 

= 9.248(1), b = 14.137(2), c = 18.262(2)A, /?I = 91.27(1)", T-lOO"C, 
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alkyne yielding cis alkenyl hydride species (cf. C) i.e. alkenyl 
and hydride ligands in mutually cis positions. Nucleophilic 
attack on co-ordinated alkynes is known7 to yield trans- 
alkenyl species as primary reaction products (i.e. the 
nucleophile and metal are trans with respect to the C=C 
double bond). We have isolated such a species (7)$ from the 
reaction of [(PMe3)3(q2-C8H14)IrCl]8 with ( lb);  the molecular 
structure§ is shown in Figure 2. Complex (7) is also related to 

Figure 1. ORTEP drawing of a molecule of (6a). Selected bond 
distances (A) and angles (degrees): Ir(1)-H(l) 1.58(9), Ir(1)-P( 1) 
2.354(2), Ir(1)-P(2) 2.256(2), Ir(l)-P(3) 2.350(2), Ir(l)-C(Il) 
2.497(2), O(I)-C(l) 1.270(11), 0(2)-C(1) 1.223(14); C(ll)-Ir(l)- 
H(1) 173(3); C(l1)-Ir(1)-O(1) 86.0(2), P(1)-Ir(1)-O(1) 82.4(2), 
O(1)-Ir(1)-H(1) 91(3), Ir(1)-O(1)-C(1) 127.3(6). 

Figure 2. ORTEP drawing of a molecule of (7). Selected bond 
distances (A): Ir(1)-H(l) 1.64(5), Ir(l)-C(11) 2.510(1), Ir(1)-P(1) 
2.315(1), Ir(1)-P(2) 2.315(1), Ir(1)-P(3) 2.338(1), Ir(1)-C(1) 
2.113(4), C(l)-C(6) 1.511(6), C(l)-C(2) 1.328(6); O( 1)-C(2) 
1.458(5), C(2)-C(3) 1.500(7), C(3)-C(4) 1.537(6); C(4)-C(5) 
1.493(8). 

the Pd-vinyl intermediate proposed in ref. 5.  Reductive 
elimination of C-H from a five-co-ordinate9 analogue of (7) 
should proceed with retention of configuration at the oc-carbon 
giving the alkylidene lactone resulting from overall trans- 
addition of OH to C X ,  as observed in our catalytic systems.l 
Thus, both regio- and stereochemistry of the product lactones 
are determined by the nucleophilic attack of carboxylate on 
the alkyne when bound to a Lewis acidic MIILH+ centre. 

We believe that Scheme 3 illustrates the general features of 
the transition metal-catalysed pathway. The proposed 
mechanism accounts for the observed trans-stereochemistry of 
the addition of the carboxylate OH group to CzC. In contrast, 
mechanisms based on migratory insertion of CrC into either 
Rh-H*O or Rh-0-C(0)- would be expected to yield cis- 
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addition products as was found" for the insertion of CzC into 
Pd-C(0)-0- in the related Pd catalysed carbonylation of 
co-alkynyl alcohols to a-alkylidene lactones. Preliminary 
kinetic evidence, in conjunction with other observations10 of 
the reaction of Lewis acids with monodentate carboxylates, 
suggests that a second equivalent of acid assists the trans- 
formation A+B. Whereas reductive elimination of the alkenyl 
C-H bond (C -+ product) is no doubt a concerted reaction, the 
initial 'oxidative addition' of the carboxylic acid OH group 
need not be concerted (vide supra). Recent evidence 9 

indicates that reductive elimination from d6ML6 complexes is 
preceded by ligand dissociation. The lack of facile phosphine 
dissociation from the tris-phosphine iridium complexes made 
possible the isolation of the model catalytic intermediates (6a) 
and (7), whereas the absence of a third phosphine ligand in ( 5 )  
allows for rapid reductive elimination of alkylidene lactones 
and excellent catalytic activity. 
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